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Bayesian statistics is all about probabilities. Before jumping into our hands-on coding activity, we’ll spend
just a few minutes discussing the basic probability relationships underlying Bayesian statistical analysis.

A little bit of probability
For Bayesian statistics, there are three basic probability types that are useful to know, both as they are
defined and as they relate to one another.

Probability types

• Marginal probability: 𝑃(𝐴)
• Joint probability: 𝑃(𝐴, 𝐵)
• Conditional probability: 𝑃(𝐴 ∣ 𝐵)

When a joint probability is comprised of independent variables — like coin flips — we can simply decompose
it into the product of the marginal probabilities:

𝑃(𝐴, 𝐵) = 𝑃(𝐴)𝑃(𝐵)

However, if one set of variables depend on the other set, then it’s not quite as straightforward. An example
of this might be: what are your odds of correctly guessing the correct number between 1 and 10 after you’ve
already heard X wrong guesses (your odds change depending on how many incorrect guesses you get to
hear).

When there is conditional dependence, then the joint probability is the conditional probability of the
first variable, A, times the marginal probability of the second variable, B:

𝑃(𝐴, 𝐵) = 𝑃(𝐴 ∣ 𝐵)𝑃(𝐵)

Bayes Theorem
Knowing these relationships, we can quickly derive Bayes’ Theorem, which is:

𝑃(𝐴 ∣ 𝐵) = 𝑃(𝐵 ∣ 𝐴)𝑃(𝐴)
𝑃(𝐵)

Derived:
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𝑃(𝐴, 𝐵) = 𝑃(𝐴, 𝐵) identity
𝑃 (𝐴 ∣ 𝐵)𝑃(𝐵) = 𝑃(𝐵 ∣ 𝐴)𝑃(𝐴) condition for both A and B

𝑃(𝐴 ∣ 𝐵) = 𝑃(𝐵 ∣ 𝐴)𝑃(𝐴)
𝑃(𝐵) divide by P(B)

Okay great! But what do we do with this? How exactly is Bayes’ Theorem useful?

Priors, likelihoods, posteriors
Bayes’ Theorem represents a way to incorporate prior information into current probability calculations. We
don’t have to pretend we’re brand new here — we know things! Bayes gives us a formal way to use this
knowledge.

To make this interpretation of Bayes a little clearer, let’s change the notation just a bit. Instead of A and
B, which are vague, we’ll use X and 𝜃:

• X: knowns (e.g., data)
• 𝜃: unknowns (e.g., probabilities/parameters)

which gives us,

𝑃(𝜃 ∣ 𝑋) = 𝑃(𝑋 ∣ 𝜃)𝑃 (𝜃)
𝑃 (𝑋)

In most applied work, we can drop 𝑃(𝑋), which leaves us,

𝑃(𝜃 ∣ 𝑋)⏟
𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟

∝ 𝑃(𝑋 ∣ 𝜃)⏟
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

⋅ 𝑃 (𝜃)⏟
𝑝𝑟𝑖𝑜𝑟

which is read as, the posterior is proportional to the likelihood times the prior.

• Prior: 𝑃(𝜃)
• Likelihood: 𝑃(𝑋 ∣ 𝜃)
• Posterior: 𝑃(𝜃 ∣ 𝑋)

In plain language, we have existing beliefs about 𝑃(𝜃) that we modify with data, X, to produce new beliefs,
𝑃(𝜃 ∣ 𝑋). How much our existing beliefs change depends on a combination of how strongly we hold them. If
we have strong prior beliefs, no data will really change them — our beliefs won’t be very different. Conversely,
if we have weak prior beliefs, our updated beliefs will be mostly a function of what we observe in our data.

Comparison to frequentist statistics
Most quantitative work in education (and in social sciences more generally) falls under the frequentist
paradigm. There are historical reasons for this, both philosophical and technological. Philosophically,
Bayesian approaches have been accused of being too subjective (the Bayesian retort is that frequentist
approaches contain subjective elements as well — they just aren’t formally incorporated into the analysis).
Technologically, Bayesian posteriors can be difficult to directly compute except for very simple (read: boring)
problems. It’s only been with the rise of modern computing power that Bayesian approaches for interesting
applied problems have been possible.

Briefly, for those trained in frequestist (likely econometric) paradigm, here are a few differences between
frequentist and Bayesian statistical approaches to applied work:
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Frequentist Bayesian
X (Data) Random Fixed
𝜃 (Parameters) Fixed Random

̂𝜃 (Output) Single value Distribution of values
Error for ̂𝜃 Computed using asymptotic formula Computed directly from

distribution
Interpretation Values that make data most likely Most likely values given data
Statistical significance Binary decision rules (e.g., p values) Direct probabilistic decision

Applicability to QuantCrit
Key benefits of Bayesian approach for applied QuantCrit analyses:

1. Clear incorporation / acknowledgment of prior (subject) beliefs
2. Ability to provide estimates using small data sets
3. Ability to provide estimates for small groups that otherwise might be dropped
4. Provide estimates that are more easily interpreted by stakeholders, data or aggregated owners, and

participants with the purpose of supporting actionable, antiracist, social justice-oriented policy

To make a point that we will return to in the next module: performing Bayesian analyses does not, in and of
itself, mean one is working within the QuantCrit paradigm or any critical paradigm. Deep engagement with
critical theories, frameworks, and positionalities is also required. We see Bayesian analyses as a specific set
of tools that lend themselves well to a critical approach. Because they are less often taught in quantitatively-
focused education research methods courses, we hope this workshop provides a short introduction. It remains
up to the researcher, however, to interrogate these tools and the results they provide with same level of rigor
demanded by critical frameworks of all quantitative approaches.
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